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Random field Ising model on the Bethe lattice 

0 Entin Wohlmant and C Domb 
Physics Department, Bar-Ilan University, Ramat-Can, Israel 

Received 9 February 1984 

Abstract. Low-temperature series expansions have been derived for the random field Ising 
model with a &function distribution on a Bethe lattice by two independent methods: (a) 
the finite-cluster method which uses graph embeddings and appropriate weighting func- 
tions; (b) the use of a recursion relation specific to the Bethe lattice. Numerical values 
have been evaluated when the coordination number 9 = 3, 4 and the coefficients analysed 
to assess critical behaviour. For small fields, and temperatures near to T,,, the critical 
exponent of the magnetisation seems to retain its mean-field value. But there is clear 
evidence of a change in critical behaviour at some point on the critical curve. It is argued 
that when 9 > 3 a tricritical point is indicated as found by Aharony in his mean-field solution. 

1. Introduction 

In a previous paper (Domb and Entin-Wohlman 1984b) we discussed the general 
derivation of low-temperature or excitation series for the random field Ising model. 
We showed that the problem is complicated by the existence of a hierarchy of first-order 
transitions at T = 0 as the magnetic field is increased from H = 0. The location and 
magnitude of these transitions is governed by the structure of clusters in a site 
percolation process with p = 4. For standard lattices the transitions start at H = 0, and 
there is, therefore, no region of non-zero field for which the lowest energy state is one 
of complete ferromagnetic order. 

The only lattice which contains such a region is the Bethe lattice in which there 
are no surface effects. It seems that this should, therefore, be a suitable lattice for 
which to derive a low-temperature series. 

The finite-cluster method for deriving such series which we discussed in our previous 
paper can of course be used for the Bethe lattice. But we have found that an alternative 
approach can be developed specific to this lattice which is rather analogous to the 
original closed form method used by Bethe (1935). The same series expansions can 
be derived from the closed form expressions, and this serves as a useful check. The 
expansions can be extended without too much difficulty using this approach and certain 
groups of terms can be partially summed. We shall find this property useful in trying 
to assess the asymptotic behaviour of the series expansions. 

2. The model 

We first introduce the notation which we shall use to identify the sites in the Bethe 
lattice (a typical such lattice with coordination number q = 3 is depicted in figure 1). 
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Figure 1. Schematic diagram of Bethe lattice illustrating notation for successive generations. 
The full circle indicates a point on the fourth generation. 

The suffix k is used as a generation index, and v k  represents a lattice site of the kth 
generation. Each v k  is specified precisely by its ancestry ( i ,  i2, i 3 , .  . . , i k )  where i ,  
represents a particular branch of the rth generation. i l  goes from 1 to q and the 
remaining i,(r > 1) go from 1 to ( q  - 1). A typical v4 site marked on the figure is 
represented by (2, 1,2,2). 

The Hamiltonian is given by 

where the index k runs through k = 0, 1,2, . . . , and k = 0 represents the central site. 
The ui take on values +1, and the v k v k + l  sum is taken over all connected pairs in the 
kth and ( k  + 1)th generations; H,,+, is the random field at site v k + l .  

For the treatment which follows we have derived benefit from Stein (1983). We 
wish to derive an expression for the partition function 2 from the trace of exp( -pq ,  
and we start by taking the trace over the spins of the ( k  + 1)th generation. 

This yields 

n 2 cosh(PJu,, +PHyk+J 
” k + l  

which we rewrite in the form 

n exp ln[2 cosh(PJu,, +PHUk,,)I 
”k+I 

= n exp[i( 1 + uvk) In 2 cosh( PJ + P H V k + J  
Y k f l  

+i( l  - a , , ) l n 2 c o s h ( ~ J - ~ H u , + , ) ]  

4 In 4 cosh( PJ +PHvk+I) cosh( PJ - /3Hvk+I) 
Y k + I  
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It follows that taking the trace over the (k + 1)th generation gives a factor 

and modifies the field acting on the spins v k  replacing PHvk by 

But if the trace has already been taken over generations (k +2) to 03, then all the H, 
from (k+1) to infinity have been replaced by L , .  Hence (4) must be replaced by 

4 1 n 4 c o s h ( p ~ + ~ ~ , , , , ) I n  cosh(pJ-PL,,+,) t 6 )  

and ( 5 )  by 

Repeating the above argument for the infinite lattice and tracing over all generations 
except the zeroth, we find that 

Z (  mvo) = exp( Luouuo) exp 
k = l  uk 

Note that the sums in (6) ,  (7) and (8) contain ( q  - 1) terms for any vk other than vo, 
but for vo they contain q terms. From (8) we can readily derive the magnetisation of 
the central spin 

M = tanh L,. (9) 

L, = PHY, +A", (10) 

We shall find it convenient to write equation (7) in the form 

where 

and we have written 

w = tanh PJ, T,,~ = tanh Luk. 

We shall also write 

e v k  =exp(-2PLvk)=(l - T v k ) / ( l  + T v k )  

eu0 is given from equation (7) by 

z + e,, 
6, = exp(-2PHu0) If ( z  = exp( -2PJ)) .  

i l = l  1 C Z ~ , ,  

The variables e,, associated with all lattice sites except the central site vo satisfy 
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In terms of the variables 8 the magnetisation (equation (9)) is given by 

= (1 - e,)/(l+ Q. (16) 

3. Magnetisation at low temperatures 

So far our treatment has been exact, and could be used for a model with different 
magnetic fields at each site. We now go over to a stochastic model in which the 
magnetic field follows a probabilty distribution which is identical for all sites. 

We first note from (1 1) that the average of A,, depends only upon the odd moments 
of T~~ (i.e. (T?,:+’)). Thus, for a random field distribution P ( H )  which is symmetric 
about H = 0 there is always a solution (T?,:+’) = 0 which yields zero magnetisation. Our 
aim is to search for another solution which will yield a finite value for the magnetisation. 

Denote the random-field moments by mI 

mf = (exP(-2PtJ ) ,  (17) 

and the &moments (which are identical for all lattice sites with k > 0) by 

4 = (k>0). (18) 

We can average equation (15) to obtain 

el = ml[z +(I  - z2)e, - ~ ( i  - z2)e2 +z2(i  - z2)e3..  . 
e2 = m2[z2  + 2 ~ ( 1 -  z2)eI +(I  - z2)(i -3z2)e2. . .I9--’ 
e3=m3[z3+3z2(i +z2)el+3~(1-~2)(1-2~2)e2...]q-1 

Following the same procedure for Ou0 for the central site, we find from (14) 

(euo) = ml[z + ( 1  - z2)el - Z(  1 - z2)e2 + z’( 1 - z2)e3 . . . 
(e:,)= m2[z2+2z(1 -z2)e, +( I  -z2)(i --3z2)e2+. . .I‘ 
( e ’ , , ) = m , [ ~ ~ + 3 z ~ ( l - Z ~ ) e ~ + 3 z ( i - ~ ~ ) ( i - 2 ~ ~ ) e ~ + .  . . l q  
. . . .  

To find the magnetisation (16) equations (19) must be solved for e l ,  e,, 0 3 . .  . and the 
results inserted in equations (20). 

From the structure of equations (16), (19) and (20), it will be seen that e l ,  02, . . (which 
are all positive) must be small quantities in order to obtain a finite positive value for 
the magnetisation ( ~ 1 ) .  In seeking an iterative solution for Of we note that for the 
early terms in the brackets on the right-hand side of (19) to be of comparable size as 
T + 0 we require 

61 - Z, e2 - z2, e, - z3, . . . er - z‘. (21) 

e/ - rnfzf(q-l), ( 2 2 )  

When this condition is satisfied, we find from (19) that 
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and hence from (21) 

m1z“4-2’  - 1. (23) 

P ( H ) = ; [ 6 ( H - H o ) + 6 ( H  +Ho)], (24) 

&exp{-2~I[~ , - (q-2)J ] )  +exp{-2pl[H,+(q-2)5]})- 1. (25) 

Ho 6 ( q  - 2)J. (26) 

P ( H )  = ( I /u (~T) ’” )  exp(-~*/2u’)  (27) 

(28) ml-exp(2P I U 1, 

For a &function distribution 

criterion (23) becomes 

Hence as T +  0 and /3 + 00 we find the condition 

For a Gaussian distribution 

we find that 
2 2  2 

and consequently condition (23) can never be satisfied, however small U. This corres- 
ponds physically to the result we have found previously that however small U the 
lowest energy state will contain overturned spins and will not correspond to complete 
ferromagnetic order. 

When the distribution is bounded condition (23) can always be satisfied if the 
distribution bounds * H o  satisfy (26). This is because in the small T limit we need 

0 

exp[-2PU(q -2)l [-Ho [exp(-2PWIP(H)  d H  

= exp{2P4H0- ( q  -2)JI) loHo {exp[2PUH - hO)l)P(H) d H  (29) 

to be finite; this is satisfied if H o S ( q  -2)J. 
We have solved equations (19) and (20) by iteration and obtained the first terms 

of the low-temperature series for the magnetisation for q = 3,4. The results are listed 
in the appendix. The method of finite clusters which is applicable to all lattices has 
already been described, (Domb and Entin-Wohlman 1984b) and yields the free energy 
series at the same time as the magnetisation series. The iterative method for the Bethe 
lattice, yields the magnetisation series in the first instance, but the free energy series 
could be obtained from (8). We were gratified to find that both methods yielded the 
same results for the magnetisation series. The iterative method could be pursued much 
further if necessary. 

4. Analysis of the magnetisation series 

We have seen that low-temperature series based on a completely ordered ferromagnetic 
ground state can be derived only for a distribution of random field which is bounded. 
We therefore confine ourselves to a &function distribution (24) with Ho satisfying (26). 
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For the standard Ising model on a Bethe lattice mean-field exponents are obtained, 
and the spontaneous magnetisation tends to zero as (T,, - VI/’, with 

There is a good deal of theoretical support for the conclusion that in a random field 
on the Bethe lattice the exponents retain their mean field values (see e.g. Aharony et 
a1 1976). We have therefore inverted the magnetisation series to obtain M P 2  in the form 

M - 2 =  1 + a l z + a 2 z 2 + .  . . (31) 

where the coefficients al are functions of the field moments m,. Fortunately the 
coefficients are all positive in sign, and hence the ratio 

(32) p n  = anlan-l+ P + o ( n )  

will lead us to the physical singularity. 
We are here concerned with a double series in some respects analogous to that for 

an Ising antiferromagnet in an external field (see e.g. Domb 1974). A detailed analysis 
of critical behaviour requires a good deal of sophistication, and we defer such a 
treatment to a separate publication. However, it is possible to draw some conclusions 
from a simple ratio analysis. 

For the standard Ising model all the ratios p,, in (32) are equal, (e.g. p,, = 3 for 
q = 3) and p,,z = 1 locates the transition temperature. In the random field case, if we 
put pnz = 1 we shall obtain a family of curves in the Ho-  T plane, and if the curves 
for successive n fall closely on one another we can conclude that the critical exponent 
retains its mean-field value. 

We have plotted these curves for q = 4 (figure 2) and q = 3 (figure 3), and have 
found that the curve resulting from pnz = 1 lies below that resulting from pn- ,z  = 1. 
At low fields and temperatures near Tco the curves fall very nearly on one another. 
However for a particular field H,, the curves seem to separate out, and we interpret 
this as corresponding to a change of power of n in the coefficients of series (31). 

Fortunately we can obtain some guidance on the nature of the change at H,, by 
looking in detail at the behaviour near T = 0. At T = 0 we know that the system has 
a first-order transition (Domb and Entin-Wohlman 1984a). If we look at the series for 
the magnetisation given in the appendix ((A2) and (A4)) we find that at low temperatures 
the positive powers of mI are dominant. We shall find that we can sum them readily 
for q = 3 ;  in fact we can sum all the terms involving only powers of m i .  To do this 
we put m2 = m3 = . . . = 0 in equation (19); the only non-zero 0 is 8 ,  which is determined 
by the equation 

e, = m,[z + ( I  - ~ ~ ) e , ] ~  ( e , / m , ) l / ’ = ~ + ( i  -z2)eI.  (33) 

Ignoring z2 in comparison with 1 we obtain the solution 

The magnetisation is then derived from (20) and (16) 

and 
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The analytic behaviour of (36) is clear; there is a singularity at points given by 

4m,z = 1, (37) 
beyond which M - 2  has no real value and at the singularity M - 2  takes on the value 
1 +8z2. We shall discuss the nature of the singularity in the next section. If (36) is 
expanded as a power series, the dominant asymptotic contribution comes from the 
term -(1-4m1z)’/’, and we obtain an asymptotic approximation to the coefficient of 
Z “  of the form 

(38) 4nm;-Zn -3/2.  

It is the n-3/2 factor which causes the fanning out in figure 3. 

find that the singularity then corresponds to 
The same analysis can be carried whilst retaining the (1 - z’) factor in (33), and we 

4m,z(l -z2)=  1, (39) 

1 +8z2/(1 - z’). (40) 

and M - 2  takes on the value 

Curve (37) has been drawn in figure 3 and will be seen to be quite close to the computed 
curves. 

For q = 4 we can adopt the same procedure, but the equation to determine el 
replacing (33) is now a cubic, 

( e , / m , ) ’ / 3  = z +( I  -z2)e1. (41) 

An explicit solution could be found by Cardan’s method but is rather complicated, 
so we have not pursued the matter. It is easy to find the critical curve analogous to 
(39) from the condition that the line y = n ~ ; ’ / ~ x  should be a tangent to the curve 

y = z +(I  - z2)x3. 

We find for this curve the relation 

(43) T m l z  27 2 ( I  -z2)= 1, 

and it is plotted in figure 2. The corresponding value of M-’ is 

M - 2 =  1 +3z2/(1 -z’). 

5. Nature of the transition 

We have discussed the general nature of the transition as a function of magnetic field 
at T=O in previous papers (Domb and Entin-Wohlman 1984a, b) but we shall now 
concentrate specifically on the Bethe lattice. The coupling energy lost in overturning 
a cluster of n connected sites on this lattice is 

(44) 

whereas the gain in magnetic energy is 2nH0,. Hence the critical magnetic field for 
the overturn of such a cluster is 

[ (q  -2)n +2]25 

(45) Ha, = ( q  - 2 ) J  + (2/ n)J. 
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Figure 2. 4 = 4. Curves p,,z = I for successive n( pn = 
a n / a n - ,  in theseriesexpansionfor hCZ. Thebroken 
curve, q m z 2  = 1, corresponds to the summation of 
all the leading powers of m,. 

Figure 3. q = 3. Curves p,,z = I as in figure 2. The 
broken curve is now 4 m , z  = 1. 

We thus have an infinite set of first-order phase transitions at points given by n = 
1,2,3,  . . . , at fields varying from qJ to ( q  - 2)J. 

If there is an infinite cluster in the site percolation process for p =;, we can say 
that there is a first-order transition at a field equal to (q - 2)J corresponding to n = W. 

There will be an infinite cluster when q > 3 and the magnitude of the discontinuity in 
magnetisation is given by the fraction of sites in the infinite cluster. 

We can then say from our previous discussion and equation (43) that this first-order 
transition continues when T > 0. Since we have provided good evidence when q = 3 , 4  
that for small fields near to T,, there is a range of Ho for which the system undergoes 
a second-order transition, it is reasonable to conclude that at some point (H,,, Tc,) on 
the critical curve there is a tricritical point marking the change from a first-order to a 
second-order transition. 

Aharony (1978) obtained the same result in a mean field approximation, but our 
critical value of field Ho at T = 0, (q - 2)J, differs from his which is iqJ.  The nature of 
this discrepancy needs further investigation. 

When q = 3 there is no infinite cluster at p = $, and the transition at (q -2)J  is to 
a limit point of first-order transitions. However there is an incipient infinite cluster 
since p c  = i. Because of the analogy between equations (39), (40) and (43) the general 
pattern along the transition curve seems to be the same as for q = 4, but the detailed 
behaviour of the singularities for T > 0 and Ho > (q - 2)J need further investigation. 
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6. Conclusions 

We have provided substantial evidence to support the conclusion that the behaviour 
of the random-field Ising model on the Bethe lattice for q>3  is the same as that 
obtained by Aharony (1978) in the mean-field approximation. But it is clear that our 
treatment is specific to the Bethe lattice since for all standard lattices overturned clusters 
occur down to Ho=O. 

To explore the behaviour of standard lattices at low temperatures as well as that 
of the Bethe lattice for Ho>(q-2)J it is necessary to develop low-temperature 
expansions for the case in whch the ground state is not one of complete ferromagnetic 
order. We are hoping to deal with this in the near future. 
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Appendix. Low-temperature series for q = 3,4 

The magnetisation series were obtained by two methods. The first is the iterative 
solution of equations ( 1 9 )  and (20). The second is based upon the excitation expansion 
(Domb 1974, Domb and Entin-Wohlman 1984b). In the process of the second method 
we also obtained the low-temperature series for the free energy. For the sake of 
completeness, we list these as well. 

(In 2) = 2pJ +z4m,  +z62m: + z8(6m: -2m: -4m2) + z"(22m:- 12m: -4m,m2) 

(a)  Four nearest neighbours ( q  = 4 )  

+ ~ ~ ~ ( 9 l m : - 6 6 m : - 2 4 m : m ~ - m : + 6 m : + 4 m , m , + t m ~ )  

+ ~ ~ ~ ( 4 0 8 m ? - 3 6 4 m f -  136m:m2- 12m:m, +66m? 

+48m:m2 +4m:+4m,m3) 

+ zI6( l938m: - 2040m; - 768m:m2 -96m:m: -3m: +546m: +408m:m2 

+ 66m:m I + 30m:m3 + 4m2m3 + 22": - 24m:m2 - 3 m i  - 4m,  m3 - $m4). 
(AI) 

The random-field moments ml are given by equation (1 7) .  The magnetisation per 
site is 

M = 1 -2[z4ml +z64m: +zs(18m: -4m:- m2)  +zl0(88m:-36m: - 12m,m,) 

- zL2(455m: -264m:-96m:m2 -4m: + 18m: + 12mlm2 + m3) 

+zI4(2448m?- 1820m:-680m:mz-60m:m, +264m:+ 192m:m2 

+ 16m: + 16m, m3) + zI6( 13 566m: - 12 240m: - 4608m;m2 - 576m:m: 

- 18m: +2730m: +2040m:m2 +330m:m, + 150m:m3 +20m2m3-88m: 

-96m:m2- 12m:- 12m,m3m,)]. (A21 
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(b) Three nearest neighbours ( q  = 3) 

(In z) =$J +z3m, + z44m: +z53m: + z6(7m: -$m:  - fm,)  

+z7( 18m: -6m: -3m,m2) +z8(ym7- 21 m:-  12m2m: - :mi)  

+ z9( 143m: - 72m: -43m:m2 - 6m:ml +3m: +3m, m2 +4m3) ('43) 

M = 1 - 2[z3m, +z43m: + z59m: +z6(28m:- 3m: - m2) 

+z7(90m: - 18m: -9m,m2) +z8(297m7- 84mf-48m2m: - 3m:) 

+ z9( 100 1 m: - 360m: - 21 5m:m2 - 30m:ml +9m: +9ml  m2 + m3) 

+z''(3432m;- 1485m7-900m?m2- 180m:m: -9m: +84mf +96m:m2 

+ 12mlm3 + 12m:) + z"(l1934m7 - 6006m: - 3654m:m2 - 882m:m: 

- 105m,m~+540m~+645m~m2+75m~m3+165mlm~+15m2m3)]. (A4) 

In this latter case we have derived two additional terms in M by the iteration 
method. The series for M - 2  discussed in the text were obtained by squaring and 
inverting equations (A2) and (A4). 

Note. Soon after this paper was completed Dr A Aharony passed on to us a copy 
of an interesting IBM preprint by R Bruinsma, dealing with the same topic. Bruinsma 
deals with the case q = 3 and obtains an integral equation from the recursion relation 
which he solves by iteration. His work is thus complementary to ours. Some of the 
results he obtains (i.e. the suggested absence of a tricritical point) may be specific to 
q = 3 for which there is no infinite cluster at p = 4. 
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